Nonparametric Spectral Analysis with Applications to Seizure Characterization Using Eeg Time Series
نویسندگان
چکیده
Understanding the seizure initiation process and its propagation pattern(s) is a critical task in epilepsy research. Characteristics of the pre-seizure electroencephalograms (EEGs) such as oscillating powers and high-frequency activities are believed to be indicative of the seizure onset and spread patterns. In this article, we analyze epileptic EEG time series using nonparametric spectral estimation methods to extract information on seizure-specific power and characteristic frequency [or frequency band(s)]. Because the EEGs may become nonstationary before seizure events, we develop methods for both stationary and local stationary processes. Based on penalized Whittle likelihood, we propose a direct generalized maximum likelihood (GML) and generalized approximate cross-validation (GACV) methods to estimate smoothing parameters in both smoothing spline spectrum estimation of a stationary process and smoothing spline ANOVA time-varying spectrum estimation of a locally stationary process. We also propose permutation methods to test if a locally stationary process is stationary. Extensive simulations indicate that the proposed direct methods, especially the direct GML, are stable and perform better than other existing methods. We apply the proposed methods to the intracranial electroencephalograms (IEEGs) of an epileptic patient to gain insights into the seizure generation process.
منابع مشابه
Optimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier
Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...
متن کاملSpectral Estimation of Stationary Time Series: Recent Developments
Spectral analysis considers the problem of determining (the art of recovering) the spectral content (i.e., the distribution of power over frequency) of a stationary time series from a finite set of measurements, by means of either nonparametric or parametric techniques. This paper introduces the spectral analysis problem, motivates the definition of power spectral density functions, and reviews...
متن کاملA Spectral Based Forecasting Tool of Epileptic Seizures
A new approach to recognize and predict succedent epileptic seizure by using single channel electroencephalogram (EEG) analysis is proposed. Spectral analysis of a brain time series of the left frontal FP1-F7 (LF) scalp location signal is devoted for seizure prediction and analysis. Important findings showing the presence of preictal spectral changes in studied brain signal are described. Spect...
متن کاملNewborn EEG Seizure Detection Based on Interspike Space Distribution in the Time-Frequency Domain
This paper presents a new time-frequency based EEG seizure detection method. This method uses the distribution of interspike intervals as a criterion for discriminating between seizure and nonseizure activities. To detect spikes in the EEG, the signal is mapped into the time-frequency domain. The high instantaneous energy of spikes is reflected as a localized energy in time-frequency domain. Hi...
متن کاملRobust spectrotemporal decomposition by iteratively reweighted least squares.
Classical nonparametric spectral analysis uses sliding windows to capture the dynamic nature of most real-world time series. This universally accepted approach fails to exploit the temporal continuity in the data and is not well-suited for signals with highly structured time-frequency representations. For a time series whose time-varying mean is the superposition of a small number of oscillator...
متن کامل